ECRR radiation doses to the public

Chris Busby, May 2010

ECRR annual doses to members of the public from all sources mSv; ICRP dose is that presented at the Riga symposium May $20^{th}\ 2010$ (http://www.euradcom.org/images/riga2010/stengrevics.pdf).

Source	ICRP	ECRR	Comment
	dose	dose	
All sources	2.9	330	
NATURAL			
Cosmic rays	0.27	0.27	
Gamma from natural	0.28	0.69	Presentation at the symposium
radionuclides in earth			showed mean gamma dose rate of
			11microRad/h; this is an annual
			dose of 0.096Rads or 0.96mSv
			including cosmic rays
Internal (natural?)	0.39	>20	There are enhancements of natural
Radionuclides			radionuclides due to anthropogenic
			activity: Uranium in fertiliser, in
			drinking water, global depleted
			uranium particles, radium from oil
			and gas, radium from clock dials,
			thorium mantles. Uranium carried a
			large ECRR weighting
Radons	2.0	0.2	ICRP weights the radon dose by a
			factor of 20 but the dose is to the
			lung and not whole body
ANTHROPOGENIC			
Medical exposures	0.53	0.53	This is highly misleading as it
			results from the averaging of many
			high dose medical exposures (for
			cancer therapy, CAT scans etc) into
	77.		the whole population.
Professional exposures	NA		This is elective: some people get
			exposed through their work e.g. X-
•	37.4	100	ray technicians
Atomic energy	NA	>100	This includes internal exposures to
			releases from normal operation of
			the nuclear fuel cycle and accidents
			which include many internal
			exposures which carry high ECRR
			weightings. The doses are not
			uniformly distributed in the
Military activities	NT A	> 200	population Mainly from two sources 1
Military activities	NA	>200	Mainly from two sources. 1.
			Atmospheric Test fallout 2.
Production of appoints	0.109	>10	Uranium weapons Depends on the specific source and
Production of specific radioactive sources	0.109	>10	Depends on the specific source and
radioactive sources			exposure

Note that the slide nr 18 (over Ionised Radiation Sources in nature and man made) given by Latvian Cancer Registry director Aivars Stengrevics at the conference did not add in the man made exposures or quantify many of those, given in the table as NA (not available). (see http://www.euradcom.org/images/riga2010/stengrevics.pdf)

The mean radiation doses to members of the public include several components which are listed below in the way that they are usually presented by the radiation risk agencies. Unfortunately this way of assessing radiation is incorrect since the concept of absorbed dose which is used is highly misleading. Details of why are to be found in the reports of the European Committee on Radiation Risk ECRR (see www.euradcom.org).

Certain internal (ingested or inhaled) radionuclides exposures are much more harmful than their absorbed dose measurements suggest and have to be multiplied by weighting factors to obtain the ECRR Dose Equivalent. This is mainly for exposures from particles, for elements (Uranium, Strontium, Barium) that bind to DNA and for certain other exposure types. Approximate annual ECRR doses are given in the table below and relate to the presentation given in Riga May 2010 by the Director of the Cancer Registry in Latvia.

The overall ECRR dose of about 330mSv per year would cause a 1.6% increase in cancer per year in overall population which is roughly what has been seen in northern hemisphere countries since the beginning of the atmospheric test exposures in the 1960s. The distribution of the cancers will be non uniform due to the non uniform nature of the exposures (higher in those near sources of internal contamination, rainfall, proximity to nuclear sites and polluted areas etc.)

The ECRR doses predict all the findings of excess cancer and leukaemia following exposures (see ECRR2010).