Nuclear Waste Disposal Disaster in Germany

General Situation in Germany

- final disposal concepts:
- -salt rock + other
 geological formations
- -<u>deep mine</u> (more difficult: access, attacks, natural catastrophes, pristine=safety)
- <u>geological barrier</u> provides safety
- -<u>non-retrievable</u> final disposal (costs,

Morsleben

- between
 Braunschweig and
 Magdeburg
 (Sachsen-Anhalt)
 - formerly GDR's central final repository for L/MAW + planned HAW final repository
- operation started

Morsleben (II)

- solid waste in barrels stacked or dumped in barrels or loosely into reposition cavaties
- liquids sprayed onto layer of lignite ashes (assuming mixture would solidify)
- total amount

Morsleben (III)

- >6,000 radiation sources (partly HAW) sunk in drill holes
- safety issues:

<u>-water influx:</u> >20

known locations; at

least one has

connection to biosphere

<u>collapse:</u> >4,000 t

cave-in 2001; 500 t

cave-in early 2009;

20,000 t cave-in

Morsleben (IV)

-unsuitable geological conditions (potassium salt layers, main anhydrite)

Operator's Failures

- inventory unknown
- public cheated about inventory & safety issues
- safety issues wellknown from the very beginning
- no public consultations in site selection
- old mines (over 100 years) not suitable for final disposal of nuclear waste
- extension & situation of cavities not completely and not in detail known
- operator increased threat of collapse by backfilling higher levels with ~800 000 m³

Gorleben

- in Wendland (Lower Saxony)
- "research mine"
- no public consultation yet
- salt rock formation

Gorleben (II)

- Known safety issues:
 - -water-carrying layers
- -no mighty & gapless layer of clay
- -<u>saltdome not at rest</u> and still rises
- -running <u>salt-</u> dissolution

General Disposal Challenges

Estimated <u>longterm safety necessary</u> for at least 1,000,000 years

-no-one knows how *society* & *technology* will look like

-no-one knows how *geological formations* will

develop by that Abklingen der Aktivität end- und zwischengelagerter Abfälle (logarithmisch) in detail

General Disposal Challenges (II)

- No complete <u>knowledge about geological</u> rock formations & layers possible
 - -destructive methods (e.g. drilling) create knowledge only about small areas -> remaining parts only estimated
 - -non-destructive methods can't show everything especially *not details of rock layers / water ways*
- <u>Chemical reactions</u> of waste / materials of container / surrounding rock formations / water not really known
 - -every few years new knowledge about unexpected complications found in labority

General Disposal Challenges (III)

- No container is longterm safe against corrosion / damages
 - -maybe some 5-70 years
 - -copper (Scandinavian KBS model): threats by oxygen and pressure
 - -steal (German Pollux model): threats by water and pressure

General Disposal Challenges (IV)

- No technical barrier (bentonite, salt-concrete) is <u>longterm safe</u>
 - -water will always find ways at the seams between natural rock formations and technical barrier
 - -reactions between water / barrier material / rock formation material unknown
 - -Pressure of surrounding rock formations will form & damage technical barriers
- No experimental <u>proof of safety</u> possible (millions of years necessary)
 - -only small labority experiments for some years with longterm estimation possible

Special Disposal Challenges

- Certain rock formation layers <u>offer points</u> for attacks of water influx (e.g. potassium salt)
- Historical water inclusions can damage rock formations
 - -increase risk of escaping radioactive particles
- Cave-ins can cause <u>further damages</u> in rock formations
 - increase risk of escaping radioactive particles
 - complete backfilling impossible at least 10 %
 - 20 % will be kept open

Special Disposal Challenges (II)

- Even a pure, not fissured rock formation will become <u>damaged by drilling</u> / exploration & construction of the repository
 - -can't completely be repaired again
- · All risk models only assumptions
 - no experience with longterm disposal
 - New problem: <u>climate change effects</u>

Special Disposal Challenges (III)

- How to keep knowledge of radioactive threat?
 - -human experience with longterm knowledge only by religions: e.g. Christianity shows *several* changes in interpretation & translation within 2,000 years
 - -even today former *understanding* of warnings about dangerous places (e.g. Australia uranium) got *lost or people don't care* about it anymore

Conclusions

- Longterm safe storage of radioactive waste is impossible
- Knowledge about dangerous reactions & developments remains uncertain
- Operators of repositories & authorities often unreliable

Conclusions (II)

Nowhere in the world a safe solution for the longterm radioactive waste has been found for certain reasons.

And it is *not possible* to do safe final disposal as well for general reasons.

Nuclear *waste must not be produced* – all NPPs have to be *shut down immediately* and worldwide.